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A METHOD OF SAMPLING CERTAIN PROBABILITYDENSITIES WITHOUT

INVERSION OF THRLR DISTRIBUTIONFUNCTIONS

by

C. J. Everett, E. D. Caahwell, and G. D. Turner

ABSTRACT

A Monte Carlo device is describedwhich bypasses the inversion
x - P-l(r) involved in directly sampling the distributionP(x) of a
stochasticvariable x with given dsnsity p(x). The method is practical
for all linear and a broad class of quadratic densities.
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I. INTRODUCTION

It is a well-known maxim of Monte Carlo practice

that one should never compute the square root x = 6

of a random number, but rather set x equal to the

greater of two such numbers. In general, if p(x) is

the density of a stochasticvariable x on [a,b], and

J

x
P(x) = p(x)dx ita distribution,the direct way of

a
sampling for x coneists in setting a random number

r = P(x) and solving for x = P‘l(r). This is how

the equation x = ~arisea from the density p(x) =

2x on [0,1]. Since such inversionsare usually

time consuming if not intractable,it is important

to provide simple alternativeswhen possible. The

following is a scheme which generalizes the &de-

vice and applies in particular to the determination

x = ~ encounteredin a prev%ous reportl

on sampling the Klein-Nishinadistribution (see

Part III below).

II. THE GENERAL METHOD

For a distributionP(x) on [a,b], the function

f(r) =r-lP(x), x= a+ (b -a)r, 0< r<l, has the

properties

1. f(O+) = (b - a)p(a) > 0, f(1) = 1

2. f’(r) = r-2[(x- a)p(x) -P(X)]

3. sdr + rds = p(x)dx, s = f(r), x = a + (b - a)r

Hence, if f(r), in particular [by (2)] if p(x), is

~, then by (1) and (3), the probability

p(x)dx of x on (x, x + dx) is the chance of a random

point (r”,s”)of the unit square falling in the lower

left region determinedby (r, r + dr), (a, s +ds),

and the curve a = f(r). But this occurs iff either

(a) r“ is on (r, r+dr) and s-< f(r”), or

s- ia on (s, s + ds) and r- ~ f-l(s-), i.e.,

(b) f-l(a-) ia on (r, r+dr) and s-~f(r’) .

Thus, x will be obtained with density p(x) if one

follows

RULE 1. {Increasingf(r) = r-lP[a + (b - a)r]}

I. Generate random numbers r“, a“

I

r“ if s-<f(r”)
II. Define p =

f-l(s-) if S- > f(r”)

III. Setx-a+(b-a)p .

Analogously, the function g(r) - r-lQ(x),
b

Q(x) =
I

p(x)dx, x = b - (b - a)r, has properties
x

(1) !3(0+)- (b - alp(b) > 0 , g(l) = 1

(2) g“(r) = r-2[(b - X)P(X) - Q(x)]
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(3) sdr+rds = p(x)(-dx)>0, s = g(r),

x= b- (b - a)r .

Now, if g(r) is increasing,in particular (by

(2)) if p(x) is decreasing, then it ia clear that

the density p(x) results from

RULE 2. {Increasing ‘r-lQ[b - (b - a)r]}

I. Generate r’, s“

I
r- if s“<g(r”)

11. Define p =
g-1(6”) if S“ > g(r”)

III. Setx=b- (b-a)p .

III. LINEAR DENSITIES

The method applies to any linear density

p(x) = C-l(CO + Clx) > 0 on a 6x 6 b, where c1 #O,

[ Iand c - (b - d Co+~C1(b +d , thus Ww=iw

solution of the quadratic equation r = P(x) =

C-l(X- a) co-f +cl(x+a) for x.

Case 1. If c1 > 0, then for x = a + (b - a)r

one finds

f(r) = r-1P(X) - co
[

+cla+~cl(b -a)r]

+
[co ++cl(b+a)] ,

increasingfor O < r < 1, and RULE 1 defines

( )-1 s.

x=a+max(b-a)r-, b + a + 2COC1

( -1)1-2a+cocl ‘

In particular, for e fixed, O < ~ ~ 1 and

p(x) = 2x/(1 - E2) on [E,l], this reada

x= ~+msx[(l-t)r”, (l+~)s-- 2~] .

For ~ > 0, the latter provides an alternative to the

choice x = &.L + (1 - ~Z)r, while for ~ = O, it be-

comes x = max(r-,s-) in lieu of x = ~, the example

cited at the outset.

Case 2. If Cl < 0, then for x = b - (b - a)r,

we have

[
g(r) - r-lQ(x) = co + clb -Ac b-a)r2 1( 1

+
[co + ~ cl(b + a)] ,

--

increasingon [0,1], and RULE 2 sets

\

I (
-1 s.

x=b-msx(b-a)r”, -b+a+2cOc1
)

(
-1
)1‘2b+cocl .

IV. QUADRATICDENSITIES

For a quadraticdensity p(x) = C
-1

PI(x),

PI(X) = co + CIX + C2X2 on [a,b],with C2 # O,

I ( )1C= (b-a) co+~cl(b+ a)+?jc2b2+ba+a2 ,

one obtains

f(r) = r
-1

[
P(x) = (b - a) p(a) + $ p“(a)x

+ * p--(a)A2], x = a + A, p--(a) = 2C-1c2,

1= (b - a)r ,

whence

f“(r) = (b - [
1 44(a)A],a)2 *p”(a) +~P

f“(0) = ~(b - a)
2.
P (a) .

Similarly,

g(r) = r-lQ(x) = (b
[

- a) p(b) -*p-(b)A

+~p--(b)X21, x-b - A, p“-(b) - 2c-~c2,

A=(b-a)r ,

with

g“(r) = (b -a)2
I

v
1 “’(b) A],-~p”(b)+~p

g“(o) = - ~(b- a)p-(b) .

Now for such a p(x) with C2 >

*

O, it is evident

that, since our method requires either f-(0) > 0 or
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g“(0) >0, we must have p“(a) SO or p“(b) ~ O, and

thareforep(x) must be monotone on the whole range

[a,b]. (Graphically,y = p(x) ia a parabola open-

ing ~.) The method of course applies to such

densities,and we omit the obvious detaila.

More interestingis the fact that quadratic

densitieswith C2 < 0 (parabolasopening down),which

are not necessarilymonotone, sre covered by the

rules, provided the interval [a,b] (lyingbetween

the zeros of p(x)) is sufficientlyrestricted to

rendar f(r) or g(r) increasingon [0,1]. By the

above remerka, it is clear that we sre limited to

the two cases:

Case 1. f-(0) > 0, f“(l) z O, equivalently,
1 (~clc~l’andb~-~a +~cc

-1a<-—
212 ),

with RULE 1

applicable.

Case 2. g“(0) > 0, g-(l) z O, equivalently,

b > - +CIC;l
(

anda>-~b+~c c
-1
)212” Here

RULE 2 applies. Obviously no p(x) falls under both

cases.

For quadratic p(x), the method, when applicable,

avoids solution of the cubic equation

r“’(x)”2y%T(-*’s
by meana of a single square root. Even the latter

might be avoided by further applicationof the

rules to a linear density, but this we do not dis-

cuss, save to ramark that one is led in this way to

the well-known alternativex = mex(r”, s’, t“) for

1/3 in tha caae of p(x) = 3X2 on [0,1].x=r

The method, for the quadratic denaitiea cover-

ed, ia summarizedbelow.

‘efine’=3(+%)$“3[++
A(s) = + [“ 2-a + sgn c

l—
-1 c

2 ‘+12c2 b-as - pi(a)II

p(s) =+ I I l\8+agn C2 /62+12c~1&a - pi(b)

(a) If C2 > 0, p;(a) ~0, or If C2 < 0,

()3C1
a < -cl/2c2,b6-$a+~

2

[

a+(b-a)r-;
set x=

a + A(s-) ; s“

(b) Ifc2> O, pi(b) <o,

()

3cl
b>-cl/2c2,a>-~ a+~

2

1b-(b-a)r”;set x=
b -p(e”) ; a-

v. NOTE ON STATISTICS

For a general density p(x)

S’ < f(r-)

> f(r”)

or if c < 0,
2

a’ < g(r”)

> g(r’)

on [a,b], the prob-

ability of x falling on a particular subinterval

/

d
[c,d] iS p = p(x)dx. If, in an experiment of

c
~kind, the event of aaaigning x to [c,d] has

probabilityp of success, and hence probability

q=l- p of failure; and if M succeasea are ob-

served in a large number N of such experiments,

then the central limit theorem aaserts the approx-

imate relation

Pl:-pl<el

the difference

I
t

-U212

‘&oe
du; t=cm,

depending only on N, p, and q.

It follows that the direct method x = P-1(x),

and the method of choosing x by the RULES, both

involving experimentsaseigning x to [c,d] with

probabilityp, are of identical statistical reli-

ability. This is reflected in the following part.

VI. TWO EXAMPLES

Example 1. The density

p(x) = 2x/(1 - C2) = 8x13 on E = +6X61

waa sampled N = 10,000 times by each of the two

methods

x-~ , and x-++msx (~r-,+s”-l),

the values of x obtained being classified in 10

equal subintervalsof
[1
+,1 . The resulting Mi/N

with the exact probabilitiespi are tabulated ae

follows.
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i 1——

mm 0.0695

RULE 0.0688

Pi 0.0700

Example 2.

P(x) -& (15-

2 3 4—— .

0.0797 0.0816 0.0884

0.0767 0.0788 0.0898

0.0767 0.0833 0.0900

The non-monotonedensity

2x - X2) on [-2,2]was sampled

10,000 times using RULE 2. The value assigned to

by a trial involving r-, s’ was x = 2 - 4p, where

p = r’ if 41s”<21+ r-(36 - 16r-), and

i 1 2 3 4—— _ _ _

RULE 0.1139 0.1123 0.1221 0.1156

PI 0.1123 0.1158 0.1170 0.1158

REFERENCE

1. C. J. Everett, E. D. Caahwell,G. D. Turner,
“A New Method of Samplin2 the K.lein-Nishina

5 6 7 8 9 10— — — — — —

0.0983 0.0962 0.1088 0.1230 0.1265 0.1280

o.097r 0.1023 0.1152 0.1209 0.1212 0.1292

0.0967 0.1033 0.1100 0.1167 0.1233 0.1300

(P=*9- /165 - 164s
‘)

otherwise. The result of

ProbabilityDistribu~ion-forAll Incident Photon
Energies Above 1 keV,” Los Alamos Scientific
Laboratory report LA-4663 (May 1971).

claeaifying the x obtained in 10 equal subintervals

x of [-2,2] is shown below, with correspondingexact

probabtlitieapi.

5 6 7 8 9 10—— —. ——

0.1143 0.1080 0.1002 0.0852 0.0730 0.0554

0.1123 0.1064 0.0982 0.0877 0.0748 0.0596
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