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A METHOD OF SAMPLING CERTAIN PROBABILITY DENSITIES WITHOUT
INVERSION OF THEIR DISTRIBUTION FUNCTIONS

by

C. J. Everett, E. D, Cashwell, and G, D. Turner

ABSTRACT

A Monte Carlo device is described which bypasses the inversion
x = P~L(z) involved in directly sampling the distribution P(x) of a
stochastic variable x with given density p(x). The method is practical
for all linear and a broad class of quadratic densities.

I. INTRODUCTION

It is a well-known maxim of Monte Carlo practice
that one should never compute the square root x = /r
of a random number, but rather set x equal to the
greater of two such numbers. In general, if p(x) is

the density of a stochastic variable x on [a,b], and
x

P(x) = J p(x)dx its distribution, the direct way of
a

sampling for x consists in setting a random number

r = P(x) and solving for x = P_l(r). This is how
the equation x = vr arises from the density plx) =
2x on [0,1]. Since such inversions are usually
time consuming if not intractable, it is important
to provide simple alternatives when possible. The
following is a scheme which generalizes the VT de-
vice and applies in particular to the determination
x = ¥l - (L~£7)r encountered in a previous reportl
on sampling the Klein-Nishina distribution (see
Part III below). .

II, THE GENERAL METHOD
For a distribution P(x) on [a,b], the function
f(r) = r'lP(x). x=a+ (b - a)r, 0 < r <1, has the

properties

1. £0Y = (b - a)pa) > 0, £Q1) =1
2. £7°(r) = £ 2[(x - a)p(x) - P(x)]

3. s8dr + rds = p(x)dx, s = f(r), x = a + (b - a)r

Hence, if £(r), in particular [by (2)] if p(x), is
increasing, then by (1) and (3), the probability
p(x)dx of x on (x, x + dx) is the chance of a random
point (r”,s”) of the unit square falling in the lower
left region determined by (r, r + dr), (s, s + ds),
and the curve s = £(r). But this occurs 1ff either

(a) r” is on (r, r + dr) and s” € £(r”), or
s 1s on (s, s + ds) and *” & f-l(s'), i.e.,

(b) fnl(s’) is on (r, r + dr) and 8” > £(r”) .

Thus, % will be obtained with density p(x) if one
follows

RULE 1. {Increasing £(r) = r—lP[a + (b ~ a)r]}
I. Generate random numbers r”, s”
r’ 1f s < £f(r”)
II. Define p = -1
£77(87) 1£f 87 > £(x°)
III. Set x=a + (b - a)p .
Analogously, the function g(r) = r-lQ(x),
b
Qx) = I p(x)dx, x = b - (b - a)r, has properties
x

(1) g0hH = ® - a)p@®) >0, g) =1

@ 7@ = ® - 0pt) - Q)]



(3) 8dr + rds = p(x)(-dx) > 0, s = g(r),

x=b=~- (b -a)r

Now, if g(r) is increasing, in particular (by
(2)) 1if p(x) is decreasing, then it is clear that
the density p(x) results from

RULE 2. {Increasing g(r) = r_]'Q[b - (b - a)rl}

I. Generate r’, s”

r’ 1f 87 < g(x”)
II. Define p = -1
g (s7) 1f 87 > g(x")

III. Set x=b - (b - a)p .

IXI. LINEAR DENSITIES
The method applies to any linear density

p(x) = C-]’(c0 + clx) # 0ona<x<b, where ¢, ¥0,

1
and C = (b - a) [co + %‘ cl(b + a)] , thus bypassing
solution of the quadratic equation r = P(x) =

-1 1

C "(x - a) lco + 3 cl(x + a)] for x.

Case 1, If ¢

1>0, then for x = a + (b - a)r

one finds

f(r) = r_lP(x) = [co +cja +-]2= cy (b - a)r

. 1
g [Co+2cl(b+a)] ’
increasing for 0 € r € 1, 'and RULE 1 defines

x = a + max [(b - a)r’, (b +a + 2coc'1-l)s’
- 2(a + cocll)] .

In particular, for § fixed, 0 € £ < 1 and
p(x) = 2x/(1 - £2) on [£,1], this reads

x = £ +max{(1 - )", (1 +8)s” - 28] .

For § > 0, the latter provides an alternative to the
choice x = ¥€° + (1 - E: )x, while for § = 0, it be-
comes x = max(r”,s”) in lieu of x = vr, the example
cited at the outset.

Case 2. If ¢y < 0, then for x = b - (b - a)r,

we have

g(r) = r'lQ(x) - [co +¢gb - % c,(b - a)r
. 1
+ [co +7c1(b + a)] ,

increasing on [0,1], and RULE 2 sets

-

- -1
x=Db —max[(b - a)r”, -(b +a+ 2co<:l )s
-1
+2(p +egert)]
IV. QUADRATIC DENSITIES

For a quadratic density p(x) = C-l pl(x),

2
pl(x) = ¢y + e,x + ¢,x" on [a,b], with <, # 0,

2

1 1 2 2
C=(b - a) co+7cl(b+a)+3-c2(b +ba+a)] ,

one obtains
£) = r T RG) = (b - @)[pGa) + 5 7 (@A
+z p“(a)le, x=a+k, p) =2,
A= (b-a) ,
whence
£(x) = b - a)? % p(a) + % 1 I COPY
£ =36 - 2% p'@ .
Similarly,
g(r) = x 77 = & - a)[p®) - 3 p @I
+ 307N, x=b -4, p7 ) = 27Ty,
A= (b ~-a) ,
with
g@ = 0b-a [-Frm+Tren],

g0 = -3 ®-ap®) .

Now for such a p(x) with €y > 0, it is evident
that, since our method requires either £7(0) » 0 or




g (0) » 0, we must have p“(a) > 0 or p”“(b) < 0, and
therefore p(x) must be monotone on the whole range
[a,b].
ing up.) The method of course applies to such

(Graphically, y = p(x) is a parabola open-

densities, and we omit the obvious details.

More interesting is the fact that quadratic
densities with cy < 0 (parabolas opening down), which
are not necessarily monotone, are covered by the
rules, provided the interval [a,b] (lying between
the zeros of p(x)) is sufficiently restricted to
render f(r) or g(r) increasing on [0,1]. By the
above remarks, it is clear that we are limited to

the two cases:

Case 1. £7(0) > 0, £°(1) # 0, equivalently,
1 -1 1 3 -1
a<-zec; andb<—-i-<a+-iclc2),wit:hRULE1
applicable.
Case 2. g”(0) > 0, g“(1) ® 0, equivalently,
11 Ly 3ot
b > 7 1% and a » - 2 (b + 7 1% ). Here

RULE 2 applies. Obviously no p(x) falls under both
cases.
For quadratic p(x), the method, when applicable,

avoids solution of the cubic equation

2 (V) :
a vl
r-P(x)=zo%)—_r(i)li-(x—a) ’

by means of a single square root. Even the latter
nmight be avoided by further application of the
rules to a linear density, but this we do not dis-
cuss, save to remark that one is led in this way to
the well~known alternative x = max(r”, s”, t7) for
X = r1/3 in the casge of p(x) = 3x2 on [0,1].

The method, for the quadratic demsities cover-

ed, 1s summarized below.

©1 ‘1
Define o = 3{a + =—}, B = 3|b + 77—
2c2 2c2

1 ° 2 -1[_C
A(s) =5 j~o + sgn c, Agr + 12, [b el pl(aﬂi
1 2 =y
u(s) = 2 8 + sgn <, /6 + 12c2 [S—:fa-a pl(bﬂ}
(a) 1If c, >0, pi(a) > 0, or if c, < 0,

3c
1 1
a < —c1/2c2, b <~ 5 <a + 2c2>

a+ (b -ax"; 8 <£(x?)

set X =
a+ A ; 8 > ()
(®) Ifc, >0, p{(b) <0, or 1f c, < 0,
3c
1 1
b > —c1/2c2, a» - 3 (a + 2c2>
s’ < g’

b-(-a)x’;
set x =

b-u(s?) ; s”>gh

v. NOTE ON STATISTICS
For a general density p(x) on [a,b], the prob-

ability of x falling on a particular subinterval
d

[e,d] i p = J p(x)dx.
c

any kind, the event of assigning x to [e¢,d] has

If, in an experiment of

probability p of success, and hence probability
q=1- p of failure; and if M successes are ob-
served in a large number N of such experiments,
then the central limit theorem asserts the approx-
imate relation

¢ 2
yll%-phel&——z—J /% qu; £ = ¢ AToq

the difference depending only on N, p, and (.

It follows that the direct method x = P-l(x),
and the method of choosing x by the RULES, both
involving experiments assigning x to [c,d] with
probability p, are of identical statistical reli-
ability. This is reflected in the following part.

VI. TWO EXAMPLES

Example 1. The density

pGx) = 2x/(L - £ =8x/3on E=2<x<1

was sampled N = 10,000 times by each of the two

methods

-

x = 1—-2-!' , and x-—;-+max<—;-r,%s'—l),

the values of x obtained being classified in 10
equal subintervals of [%31]. The resulting Mi/N
with the exact probabilities p, are tabulated as

follows.



1 1 2 3 4 5 6 7 8 9 10
ROOT 0.0695 0.0797 0.0816 0.0884 0.0983 0.0962 0.1088 0.1230 0.1265 0.1280
RULE 0.0688 0.0767 0.0788 0.0898 0.097% 0.1023 0.1152 0.1209 0.1212 0.1292

Py 0.0700 0.0767 0.0833 0.0900 0.0967 0.1033 0.1100 0.1167 0.1233 0.1300

Example 2. The non-monotone density - % (9 - /165 = 164s’) otherwise. The result of
plx) = '1%4' (15 - 2x - x2) on [-2,2] was sampled classifying the x obtained in 10 equal subintervals
10,000 times using RULE 2. The value assigned to x of [-2,2] is shown below, with corresponding exact
by a trial involving r”, s” was x = 2 - 4p, where probabilities Py
p=1r" 1f 418 < 21 + r°(36 - 16r”), and

i 1 2 3 4 5 6 7 8 9 10
RULE 0.1139 0.1123 0.1221 0.1156 0.1143 0.1080 0.1002 0.0852 0.0730 0.0554

Py 0.1123 0.1158 0.1170 0.1158 0.1123 0.1064 0.0982 0.0877 0.0748 0.0596
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